1.∫xαdx=xα+1α+1+C,α∈R,α≠−12.∫dxx=lnx+C3.∫axdx=axlna+C,a∈R,a>0,a≠14.∫exdx=ex+C5.∫sinxdx=−cosx+C6.∫cosxdx=sinx+C7.∫dxcos2x=tanx+C8.∫dxsin2x=−cotx+C9.∫dxa2−x2=arcsinxα+C,α∈R,α≠010.∫dxa2+x2=1aarctanxa+C11.∫dxa2±x2=lnx+x2±a2+C12.∫dxa2−x2=12alna+xa−x+C13.∫a2−x2dx=12xa2−x2+a2arcsinxa+C14.∫x2+a2dx=12xx2+a2+a2lnx+x2+a2+C15.∫sinhxdx=coshx+C16.∫coshxdx=sinhx+C17.∫dxcosh2x=tanhx+C18.∫dxsinh2x=−cothx+C